Abstract

The piezoelectric properties of relaxor based ferroelectric single crystals, such as Pb(Zn1/3Nb2/3)O3- PbTiO3 (PZN-PT) and Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) were investigated for electromechanical actuators. In contrast to polycrystalline materials such as Pb(Zr, Ti)O3 (PZTs), morphotropic phase boundary (MPB) compositions were not essential for high piezoelectric strain. Piezoelectric coefficients (d33’s) >2200 pC/N and subsequent strain levels up to >0.5% with minimal hysteresis were observed. Crystallographically, high strains are achieved for <001> oriented rhombohedral crystals, though <111> is the polar direction. Ultrahigh strain levels up to 1.7%, an order of magnitude larger than those available from conventional piezoelectric and electrostrictive ceramics could be achieved, possibly being related to an E-field induced phase transformation. High electromechanical coupling (k33) >90% and low dielectric loss <1%, along with large strain make these crystals promising candidates for high performance solid state actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.