Abstract

In this paper, we consider the semantic design and verified compilation of a C-like programming language for concurrent shared-memory computation above x86 multiprocessors. The design of such a language is made surprisingly subtle by several factors: the relaxed-memory behaviour of the hardware, the effects of compiler optimisation on concurrent code, the need to support high-performance concurrent algorithms, and the desire for a reasonably simple programming model. In turn, this complexity makes verified (or verifying) compilation both essential and challenging. We define a concurrent relaxed-memory semantics for ClightTSO , an extension of CompCert's Clight in which the processor's memory model is exposed for high-performance code. We discuss a strategy for verifying compilation from ClightTSO to x86, which we validate with correctness proofs (building on CompCert) for the most interesting compiler phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.