Abstract

This paper is devoted to the stability analysis and sampled-data controller design problem for networked control systems subject to network-induced delays. The objective is to provide relaxed conditions in terms of linear matrix inequalities. Indeed, reducing the conservatism of such conditions allows to maximize the admissible range of the network-induced delays. To do so, an augmented Lyapunov–Krasovskii functional is proposed, which involves a novel augmented state vector to include as much as possible the information from the time-varying network-induced delay into the stability conditions, together with the use of extended Wirtinger-based inequalities, an extended reciprocal convexity approach and the Finsler’s lemma. Then, declined from the proposed stability conditions, new relaxed delay-dependent conditions for the design of networked sampled-data controllers are proposed. These allow to obtain simultaneously the controller gains and the maximal allowable bound of the network-induced delays with regards to its lower bound. Three illustrative examples are provided to show the effectiveness of the proposed networked control systems stability and controller design conditions, as well as to highlight the so raised conservatism improvements regarding the previous relevant results from the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.