Abstract

We propose a new majorization-minimization (MM) method for non-smooth and non-convex programs, which is general enough to include the existing MM methods. Besides the local majorization condition, we only require that the difference between the directional derivatives of the objective function and its surrogate function vanishes when the number of iterations approaches infinity, which is a very weak condition. So our method can use a surrogate function that directly approximates the non-smooth objective function. In comparison, all the existing MM methods construct the surrogate function by approximating the smooth component of the objective function. We apply our relaxed MM methods to the robust matrix factorization (RMF) problem with different regularizations, where our locally majorant algorithm shows advantages over the state-of-the-art approaches for RMF. This is the first algorithm for RMF ensuring, without extra assumptions, that any limit point of the iterates is a stationary point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.