Abstract

We consider a class of optimal power flow (OPF) applications where some loads offer a modulation service in exchange for an activation fee. These applications can be modeled as multi-period formulations of the OPF with discrete variables that define mixed-integer non-convex mathematical programs. We propose two types of relaxations to tackle these problems. One is based on a Lagrangian relaxation and the other is based on a network flow relaxation. Both relaxations are tested on several benchmarks and, although they provide a comparable dual bound, it appears that the constraints in the solutions derived from the network flow relaxation are significantly less violated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.