Abstract

The mechanical compliance and modulus retardation/relaxation functions are examined in terms of a general behaviour which contains more than one process. An analytical approach to the transformation in the anelastic response between the compliance and the modulus is derived and applied to a cooperative model of relaxation behaviour. In particular it is shown that mechanical viscoelasticity is equivalent to the anomalous low frequency dispersion process that has been observed in dielectrics containing quasifree charges. Comparison with published experimental data over a wide range of solid materials shows the validity of the cooperative model to mechanical relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.