Abstract

Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D 237, 1998 (2008)]. They can serve as numerical algorithms to compute maximum entropy states and minimum enstrophy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.