Abstract

The excited states of carotenoids have been a subject of numerous studies. While a majority of these reports target the excited state dynamics initiated by the excitation of the S2 state, the upper excited state(s) absorbing in the UV spectral region (denoted as SUV) has been only scarcely studied. Moreover, the relation between the SUV and Sn, the final state of the well-known S1-Sn transition of carotenoids, remains unknown. To address this yet-unresolved issue, we compared the excited state dynamics of two carotenoids, namely, β-carotene and astaxanthin, after excitation of either the SUV or Sn state. The SUV state was excited directly by UV light, and the excitation of the Sn state was achieved via re-pumping the S1-Sn transition. The results indicated that direct SUV excitation produces an S1-Sn band that is significantly broader than that obtained after S2 excitation, most probably due to the generation of multiple S1 conformations produced by excess energy. No such broadening is observed if the Sn state is excited by the re-pump pulse. This shows that the Sn and SUV states are different, each initializing a specific relaxation pathway. We propose that the Sn state retains the coupled triplet pair character of the S1 state, while the SUV state is the higher state of Bu+ symmetry accessible by one-photon transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.