Abstract

2D NOESY and TOCSY play central roles in contemporary NMR. We have recently discussed how solvent-driven exchanges can significantly enhance the sensitivity of such methods when attempting correlations between labile and nonlabile protons. This study explores two scenarios where similar sensitivity enhancements can be achieved in the absence of solvent exchange: the first one involves biomolecular paramagnetic systems, while the other involves small organic molecules in natural abundance. It is shown that, in both cases, the effects introduced by either differential paramagnetic shift and relaxation or by polarization sharing among networks of protons can provide a similar sensitivity boost, as previously discussed for solvent exchange. The origin and potential of the resulting enhancements are analyzed, and experiments that demonstrate them in protein and natural products are exemplified. Limitations and future improvements of these approaches are also briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.