Abstract

This study reports a new relativistic prolapse-free Gaussian basis set series of quadruple-ζ quality, RPF-4Z, and an augmented version that includes extra diffuse functions, aug-RPF-4Z, for all the s- and p-block elements. The relativistic adapted Gaussian basis sets (RAGBSs), which are free of variational prolapse, were used as the starting primitive sets. Exponents of correlating/polarization functions were taken from a polynomial version of the generator coordinate Dirac-Fock (p-GCDF) method, in which the previously optimized RAGBS parameters are applied. By using such procedure we aimed to reduce the computational demand of these sets in comparison with fully optimized ones. The effect of these basis set increments on the correlation energy was evaluated by atomic multireference configuration interaction calculations with single and double excitations out of the valence shell. Finally, atomic and molecular calculations of fundamental properties (bond lengths, vibrational frequencies, dipole moments and electron affinities) corroborate the quadruple-ζ quality of these new sets that are also about half-time-consuming than the correspondent Dyall's v4z sets. The read-to use format of these (aug-)RPF-4Fz sets are available as Supporting Information files and can also be found at http://basis-sets.iqsc.usp.br/ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.