Abstract

Observations of gamma-ray-bursts and jets from active galactic nuclei reveal that the jet flow is characterized by a high radiative efficiency and that the dissipative mechanism must be a powerful accelerator of non-thermal particles. Shocks and magnetic reconnection have long been considered as possible candidates for powering the jet emission. Recent progress via fully-kinetic particle-in-cell simulations allows us to revisit this issue on firm physical grounds. We show that shock models are unlikely to account for the jet emission. In fact, when shocks are efficient at dissipating energy, they typically do not accelerate particles far beyond the thermal energy, and vice versa. In contrast, we show that magnetic reconnection can deposit more than 50 per cent of the dissipated energy into non-thermal leptons as long as the energy density of the magnetic field in the bulk flow is larger than the rest-mass energy density. The emitting region, i.e. the reconnection downstream, is characterized by a rough energy equipartition between magnetic fields and radiating particles, which naturally accounts for a commonly observed property of blazar jets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.