Abstract
The analytical solutions of the Dirac equation with the modified Rosen-Morse potential energy model have been explored. Under the condition of the spin symmetry, we present the bound state energy equation. In the nonrelativistic limit, the relativistic energy equation becomes the nonrelativistic energy form deduced within the framework of the Schrodinger equation. We find that the relativistic effect of the relative motion of the ions leads to a little decrease in the vibrational energies when the vector potential is equal to the scalar potential for the electronic ground state of the SiC radical, while to an increase in those if the vector potential is greater than the scalar potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.