Abstract

Systematic investigations are performed for the energy levels and radiative properties for selected He-like C4+, Ne8+, Ar16+, and Kr34+ ions embedded in weakly coupled plasmas. For the conditions in which the Coulomb coupling parameter is small, the standard Debye model is adopted to describe the plasma screening effects. Within the relativistic framework, the modified version of the Flexible Atomic Code computations is carried out by considering a Debye-Hückel potential, in which the plasma screening is taken into account for both the electron-nucleus and electron-electron (e-e) interactions. An independent calculation for various Debye lengths is also presented using the multiconfiguration Dirac-Fock method for comparison purposes. For the nonrelativistic treatment, the analytical solution of the Schrödinger equation with the Debye screened potential is proposed. The variation method is developed with Slater wave function as a trial wave function that contains the variational parameters. An exact analytical expression of relativistic corrections such as the mass-velocity correction, the one/two-body Darwin correction, the spin-spin contact interaction correction, and the orbit-orbit interaction correction is derived. Differences among our three kinds of calculated energy levels and transition properties are analyzed in terms of the nuclear charge and/or the Debye length. Systematic trend is observed for all the properties under study with respect to increased screening. The influence of relativistic effects is also investigated in detail and found to play an important role in these systems. Our results are compared with available results from other theoretical calculations and the experimental values in the literature, and a good agreement is achieved. This work should be useful for astrophysical applications where such plasma environments exist.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.