Abstract

Accurate relativistic calculations of the oscillator strength densities and photoeffect cross sections for neutral hydrogen and hydrogenic lead (Z = 82) are performed up to the high energy region. Relativistically induced Cooper minima are found in the partial wave contributions at high energies. The results are in good agreement with calculations in which the scattering continuum is represented by a discrete relativistic variational basis set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.