Abstract

We have employed both Z-vector method and the expectation value approach in the relativistic coupled-cluster framework to calculate the scalar-pseudoscalar (S-PS) P, T -odd interaction constant (W_s) and the effective electric field (Eeff) experienced by the unpaired electron in the ground electronic state of RaF. Further, the magnetic hyperfine structure constants of ^{223}Ra in RaF and ^{223}Ra+ are also calculated and compared with the experimental values wherever available to judge the extent of accuracy obtained in the employed methods. The outcome of our study reveals that the Z-vector method is superior than the expectation value approach in terms of accuracy obtained for the calculation of ground state property. The Z-vector calculation shows that RaF has a high E_eff (52.5 GV/cm) and W_s (141.2 kHz) which makes it a potential candidate for the eEDM experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.