Abstract

Fully relativistic calculations are presented for the double $K$-shell photoionization cross section for several neutral medium-$Z$ atoms, from magnesium ($Z = 10$) up to silver ($Z = 47$). The calculations take into account all multipoles of the absorbed photon as well as the retardation of the electron-electron interaction. The approach is based on the partial-wave representation of the Dirac continuum states and uses the Green-function technique to represent the full Dirac spectrum of intermediate states. The method is strictly gauge invariant, which is used as an independent cross check of the computational procedure. The calculated ratios of the double-to-single $K$-shell ionization cross sections are compared with the experimental data and with previous computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.