Abstract

We have assessed the relative contribution of the thyroid hormones and noradrenaline (NA) on the calorigenic function of brown adipose tissue (BAT) as indicated by GDP binding and O2 consumption of BAT mitochondria. Male Wistar rats of 200 g body weight were made hypothyroid with 131I. Groups of animals were injected s.c., in divided doses, daily for 10 days, with thyroxine (2 micrograms/100 g body weight) or tri-iodothyronine (T3; 0.3 microgram/100 g body weight). Animals were used 7 days after bilateral or unilateral sympathetic nerve excision of BAT (Sx). Sham-operated rats were used as controls. In normal rats kept at 22 degrees C, GDP binding reached 94 +/- 24 pmol/mg protein; untreated hypothyroid rats had normal binding values whereas the T3-treated group showed an increased binding. Sx induced a sharp fall in the three groups (P < 0.01). After 24-h exposure to 4 degrees C GDP binding increased in normal rats to about 410% (P < 0.01) whereas binding failed to increase in response to cold in the untreated hypothyroid and the T3-treated groups. Sx reduced GDP binding in the three groups significantly (P < 0.01). The consumption of O2 by BAT mitochondria showed similar variations in response to Sx and to cold exposure as did GDP binding. The data indicated that, at room temperature, BAT calorigenesis can function without the thyroid hormones, though not without the catecholamines. The findings in rats exposed to cold showed that the lack of NA was significantly more effective than the lack of thyroid hormones in preventing the BAT hyperactive response. This does not negate an active role for T3 in BAT calorigenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.