Abstract

The Patlak graphical method is widely used in parametric imaging for modeling irreversible radiotracer kinetics in dynamic PET. The net influx rate of radiotracer can be determined from the slope of the Patlak plot. The implementation of the standard Patlak method requires the knowledge of full-time input function from the injection time until the scan end time, which presents a challenge for use in the clinic. This paper proposes a new relative Patlak plot method that does not require early-time input function and therefore can be more efficient for parametric imaging. Theoretical analysis proves that the effect of early-time input function is a constant scaling factor on the Patlak slope estimation. Thus, the parametric image of the slope of the relative Patlak plot is related to the parametric image of standard Patlak slope by a global scaling factor. This theoretical finding has been further demonstrated by computer simulation and real patient data. The study indicates that parametric imaging of the relative Patlak slope can be used as a substitute of parametric imaging of standard Patlak slope for tasks that do not require absolute quantification, such as lesion detection and tumor volume segmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.