Abstract

Various methods for sampling stationary, Gaussian stochastic processes are investigated and compared with an emphasis on applications to processes with power law energy spectra. Several approaches are considered, including a Riemann summation using left endpoints, the use of random wave numbers to sample a the spectrum in proportion to the energy it contains, and a combination of the two. The Fourier-wavelet method of Elliott et al. is investigated and compared with other methods, all of which are evaluated in terms of their ability to sample the stochastic process over a large number of decades for a given computational cost. The Fourier-wavelet method has accuracy which increases linearly with the computational complexity, while the accuracy of the other methods grows logarithmically. For the Kolmogorov spectrum, a hybrid quadrature method is as efficient as the Fourier-wavelet method, if no more than eight decades of accuracy are required. The effectiveness of this hybrid method wanes when one samples fields whose energy spectrum decays more rapidly near the origin. The Fourier-wavelet method has roughly the same behavior independently of the exponent of the power law. The Fourier-wavelet method returns samples which are Gaussian over the range of values where the structure function is well approximated. By contrast, (multi-point) Gaussianity may be lost at the smaller length scales when one uses methods with random wave numbers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.