Abstract

Solid models may be blended through filleting or rounding operations that typically replace the vicinity of concave or convex edges by blends that smoothly connect to the rest of the solid’s boundary. Circular blends, which are popular in manufacturing, are each the subset of a canal surface that bounds the region swept by a ball of constant or varying radius as it rolls on the solid while maintaining two tangential contacts. We propose to use a second solid to control the radius variation. This new formulation supports global blending (simultaneous rounding and filleting) operations and yields a simple set-theoretic formulation of the relative blending R B ( A ) of a solid A given a control solid B . We propose user-interface options, describe practical implementations, and show results in 2 and 3 dimensions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.