Abstract

A key parameter in modeling soil-venting systems is relative air permeability, determined as a function of liquid saturation. The focus of the present study was to characterize the relationship of the relative air permeability as a function of air saturation in soil-venting systems. A new laboratory apparatus was used to simulate the soil venting and measure the air permeability of soil samples. Sand samples wetted with mixtures of water and gasoline at different ratios were used. It was revealed that the prediction of relative air permeability for moist noncohesive soil can be made in terms of intrinsic permeability and air-filled porosity alone, and not the type of liquid present in the pores. Comparisons of measured data with existing relations for relative air permeability as a function of total liquid saturation were made to determine the most accurate and practical forms for engineering applications. For the sand sample used, the evaluation revealed that compared to the existing relations, a derived second-order polynomial expression provides a good estimate of relative air permeability and does not require estimation of soil-water–retention curve parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.