Abstract

Abstract The impedance properties (resistance and capacitance) of oxide scales on the martensitic/ferritic steel HT-9 and austenitic stainless steel Type 316L (UNS S31603) were examined during immersion in lead-bismuth eutectic (LBE) using a technique similar to electrochemical impedance spectroscopy. These scales were created by preoxidizing the samples in an air/water vapor environment at 800°C for various times prior to immersion in LBE. Calculation of oxide conductivity for samples immersed in LBE at 200°C for 200 h yielded σHT9 ≈ 4 × 10−7 (Ω × cm)−1 while σ316 ≈ 3 × 10−8 (Ω × cm)−1. The influence of temperature alone gave the anticipated Arrhenius behavior with Ea equal to 0.12 eV, which is consistent with an electron hopping in ferrites close to the magnetite composition (such as Fex+1Cr2−xO4). The influence of temperature during immersion in LBE deviated from Arrhenius behavior (irreversible). Oxide conductivity data for HT-9 were also used to calculate the corrosion rate using Wagner's oxidation t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.