Abstract

The 12 May 2008 Wenchuan earthquake in China triggered numerous landslides. Loose landslide materials can easily evolve into deadly debris flows during wet seasons. During the period from 2008 to 2011, three separate large-scale debris flows occurred in the Pubugou Ravine near the epicentre of the earthquake that were among the largest repeated debris flows ever reported. Approximately 1.76 × 106 m3 of sediment was deposited during these three events. This paper aims to (i) analyze the movements of solid materials during the repeated debris flows, (ii) discuss the evolution of the initiation mechanisms of these debris flows, and (iii) evaluate the changing depositional morphology of the debris flow fans and examine the particle sizes of the debris flow materials. To achieve the above research objectives, timely field investigations were undertaken in the past 5 years after each of these debris flow events. Satellite images were used to delineate the boundaries of the initiation areas, the transportation channels, and the deposition zones of these debris flows. With the occurrence of the repeated debris flows, the hill slope deposits gradually evolved into channel deposits and the solid materials in the channels moved toward the gully mouth. Hence, channelized flows gradually became dominant. The debris fan materials of the repeated debris flows became coarser and coarser over time. The three debris flows were all characterized by coarse boulder fronts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.