Abstract

The selection of drug resistant viruses is a major problem in efforts to combat HIV and AIDS, hence, new compounds are required. We report crystal structures of wild-type and mutant HIV-1 RT with bound non-nucleoside (NNRTI) GW420867X, aimed at investigating the basis for its high potency and improved drug resistance profile compared to the first-generation drug nevirapine. GW420867X occupies a smaller volume than many NNRTIs, yet accesses key regions of the binding pocket. GW420867X has few contacts with Tyr188, hence, explaining the small effect of mutating this residue on inhibitor-binding potency. In a mutated NNRTI pocket, GW420867X either remains in a similar position compared to wild-type (RT(Leu100Ile) and RT(Tyr188Cys)) or rearranges within the pocket (RT(Lys101Glu)). For RT(Leu100Ile), GW420867X does not shift position, in spite of forming different side-chain contacts. The small bulk of GW420867X allows adaptation to a mutated NNRTI binding site by repositioning or readjustment of side-chain contacts with only small reductions in binding affinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.