Abstract

Cells from patients with Bloom syndrome, a cancer-prone disorder with cutaneous photosensitivity and spontaneous chromosome breakage, exhibit an abnormally increased number of sister-chromatid exchanges following treatment with 5-bromodeoxyuridine (BrdU). This effect has been postulated to be mediated by abnormal topoisomerase II activity. We used alkaline elution to measure DNA single-strand breakage following prolonged exposure to BrdU. Five-day exposure to BrdU produced equal numbers of alkali-labile sites in normal and Bloom-syndrome fibroblasts. These breaks were not protein-associated but were produced by alkali. Treatment with topoisomerase II inhibitors induced similar frequencies of DNA single-strand breaks in normal and Bloom-syndrome fibroblasts. These findings imply that BrdU incorporation into cellular DNA induces alkali-labile DNA lesions that are independent of topoisomerase II activity in Bloom and normal cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.