Abstract
Abstract Lots of generalized heat conduction models have been developed in recent decades, such as local thermal nonequilibrium model, phase lagging model, and nonlocal heat conduction model. But no attempt was made to prove which model is better (or worse) than others, or whether there is a certain relationship between these different models. With this inspiration, we establish the nonlocal bioheat transfer equations with lagging time, and the two and three-temperature bioheat transfer equations with considering all the carrier's heat conduction effect are also constructed. Comparing the two (or three)-temperature equation model with the nonlocal bioheat transfer models with lagging time, one may obtain: the lagging time of temperature gradient τtand the nonlocal characteristic length λq in the space derivative items of heat flux have the same effect on heat transfer; when the heat transport occur among N energy carriers with considering the conduction effects of all carries, the heat transfer processes are dependent upon the high-order effect of τqN-1, τtN-1 and λt(2N-1) in nonlocal dual phase lag bioheat transfer model. This phenomenon is very important for biological and medical systems where numerous carriers may exist on the cellular level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.