Abstract

Double immunofluorescence microscopy was used to study the relationship between the Golgi complex and microtubules enriched in posttranslationally modified tubulins in cultured mouse L929 fibroblasts. In interphase cells, the elements of the Golgi complex were grouped around the microtubule-organizing center. From here, tyrosinated microtubules extended to the periphery of the cells, whereas the distribution of detyrosinated and acetylated microtubules largely overlapped with that of the Golgi complex. Treatment of cells with 10 microM nocodazole led to the disruption of all microtubules and dispersion of the Golgi elements. Following withdrawal of the drug, tyrosinated microtubules reformed first, followed by acetylated and then detyrosinated microtubules. In parallel, the Golgi elements moved back toward the juxtanuclear region and reestablished a close spatial relationship first with the acetylated and later also with the detyrosinated microtubules. Long-term recovery in the presence of 0.15 or 0.3 microM nocodazole allowed partial reformation of tyrosinated and acetylated microtubules, whereas no or only a few detyrosinated microtubules were detected. At the same time, the Golgi elements were grouped closer together around or on one side of the nucleus in close relation to acetylated microtubules. In synchronized cells released from a mitotic block, a radiating array of tyrosinated microtubules was first formed, followed by acetylated and detyrosinated microtubules. The Golgi elements initially came together in a few groups and thereafter took an overall morphology similar to that in interphase cells. During this reunification, they showed a close spatial relationship to acetylated microtubules, whereas detyrosinated microtubules appeared only later. Microtubules enriched in acetylated and/or detyrosinated tubulin thus appear to take part in establishing and maintaining the organization of the Golgi elements within an interconnected supraorganellar system. Whether the acetylation and detyrosination of tubulin are directly involved in this process or merely represent two modifications within this subpopulation of microtubules remains unknown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.