Abstract

Our study was to investigate the correlation between 18F-FDG uptake in HCC and tumor PD-L1 expression in HCC, and assess the value of 18F-FDG PET/CT imaging for predicting PD-L1 expression in HCC. A total of 102 patients with confirmed HCC were included in this retrospective study. The PD-L1 expression and immune cell infiltrating of tumors were determined through immunohistochemistry staining. The SUVmax of HCC lesions were assessed using 18F-FDG PET/CT. The correlation between PD-L1 expression and the clinicopathological were evaluated by the Cox proportional hazards model and the Kaplan-Meier survival analysis. The SUVmax of HCC primary tumors was higher in patients with poorly differentiated HCC, large tumor size, portal vein tumor thrombus, lymph node and distant metastases, and death. The SUVmax of HCC are correlated with the PD-L1 expression and the number of cytotoxic T cells and M2 macrophage infiltration. PD-L1 expression was significantly correlated with tumor SUVmax, tumor differentiation, tumor size, portal vein tumor thrombosis, and patient survival status and infiltrating M2 macrophages. Further, our results confirmed that SUVmax, portal vein tumor thrombosis, and the number of infiltrating M2 macrophages were closely related to PD-L1 expression and were independent risk factors by multivariate analysis. The combined assessment of SUVmax values and the presence of portal vein tumor thrombosis by 18F-FDG PET/CT imaging can help determine PD-L1 expression in HCC. FDG uptake in HCC was positively correlated with the PD-L1 expression and the number of cytotoxic T cells and M2 macrophage infiltration. The combined use of SUVmax and portal vein tumor thrombosis by PET/CT imaging assess the PD-L1 expression better in HCC. These findings also provide a basis for clinical studies to assess the immune status of tumors by PET/CT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.