Abstract
BackgroundWe developed a fully automatic three-dimensional knee MRI analysis software that can quantify meniscus extrusion and cartilage measurements, including the projected cartilage area ratio (PCAR), which represents the ratio of the subject’s actual cartilage area to their ideal cartilage area. We also collected 3D MRI knee data from 561 volunteers (aged 30–79 years) from the “Kanagawa Knee Study.” Our purposes were to verify the accuracy of the software for automatic cartilage and meniscus segmentation using knee MRI and to examine the relationship between medial meniscus extrusion measurements and cartilage measurements from Kanagawa Knee Study data.MethodsWe constructed a neural network for the software by randomly choosing 10 healthy volunteers and 103 patients with knee pain. We validated the algorithm by randomly selecting 108 of these 113 subjects for training, and determined Dice similarity coefficients from five other subjects. We constructed a neural network using all data (113 subjects) for training. Cartilage thickness, cartilage volume, and PCAR in the medial femoral, lateral femoral, medial tibial, and lateral tibial regions were quantified by using the trained software on Kanagawa Knee Study data and their relationship with subject height was investigated. We also quantified the medial meniscus coverage ratio (MMCR), defined as the ratio of the overlapping area between the medial meniscus area and the medial tibial cartilage area to the medial tibial cartilage area. Finally, we examined the relationship between MMCR and PCAR at middle central medial tibial (mcMT) subregion located in the center of nine subregions in the medial tibial cartilage.ResultsDice similarity coefficients for cartilage and meniscus were both approximately 0.9. The femoral and tibial cartilage thickness and volume at each region correlated with height, but PCAR did not correlate with height in most settings. PCAR at the mcMT was significantly correlated with MMCR.ConclusionsOur software showed high segmentation accuracy for the knee cartilage and meniscus. PCAR was more useful than cartilage thickness or volume since it was less affected by height. Relations ips were observed between the medial tibial cartilage measurements and the medial meniscus extrusion measurements in our cross-sectional study.Trial registrationUMIN, UMIN000032826; 1 September 2018,
Highlights
Three-dimensional magnetic resonance imaging (3D Magnetic resonance imaging (MRI)) analysis is useful for the measurement of cartilage and the meniscus in patients with osteoarthritis (OA) of the knee [1,2,3]
We recently proposed an additional cartilage measurement, the “projected cartilage area ratio” (PCAR) (Fig. 1), which represents the ratio of a subject’s actual cartilage area to that patient’s ideal cartilage area, defined as a region of interest (ROI) that is predicted from bone morphology
Correlation between cartilage at middle central medial tibial (mcMT) and medial meniscus coverage ratio (MMCR) We focused on the mcMT subregion (Fig. 1 b, c) to examine the relationship between cartilage measurements and medial meniscus extrusion (MME) area, MME volume and MMCR in nine subregions in each of the five cartilage subregions (Fig. 4 a, b), since that subregion was considered to be more representative than the other subregions
Summary
Three-dimensional magnetic resonance imaging (3D MRI) analysis is useful for the measurement of cartilage and the meniscus in patients with osteoarthritis (OA) of the knee [1,2,3] This promising method is not popular at present because segmentation of cartilage and meniscus often requires manual operation or correction, which requires time and effort. Our previous developments did not address the tibial cartilage, and the 3D-reconstructed femoral cartilage was projected directly onto the 2D plane This resulted in a greater apparent thickness in the 2D projection than the actual thickness due to the slope of the cartilage [14]. We developed a fully automatic three-dimensional knee MRI analysis software that can quantify meniscus extrusion and cartilage measurements, including the projected cartilage area ratio (PCAR), which represents the ratio of the subject’s actual cartilage area to their ideal cartilage area. We collected 3D MRI knee data from 561 volunteers (aged 30–79 years) from the “Kanagawa Knee Study.” Our purposes were to verify the accuracy of the software for automatic cartilage and meniscus segmentation using knee MRI and to examine the relationship between medial meniscus extrusion measurements and cartilage measurements from Kanagawa Knee Study data
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.