Abstract

There are several methods for determining the stiffness of asphalt concrete in an existing pavement. The three primary methods are: dynamic modulus testing in the laboratory, predictive equations, and falling weight deflectometer (FWD) testing. Asphalt over asphalt (AC/AC) overlay design procedures allow the use of multiple methods to characterize fatigue damage in the existing asphalt concrete. Therefore, understanding the difference between these methods is critical for AC/AC overlay design. The differences between the methods for determining asphalt concrete stiffness and how these differences are related to FWD load magnitude and asphalt temperature are examined. Data from the Federal Highway Administration’s Long-Term Pavement Performance Program (LTPP) are used in this investigation. It is found that the stiffness determined through FWD testing and backcalculation is generally less than that estimated using the Witczak predictive equation and binder aging models. Furthermore, it is found that both FWD load magnitude and asphalt temperature have a significant effect on the difference between backcalculated and estimated stiffness of asphalt concrete. Backcalculated stiffness increases relative to estimated stiffness as FWD load and temperature increase. These effects must be considered when multiple methods of determining asphalt concrete stiffness are used interchangeably for overlay design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.