Abstract

When Euclidean coordinate lengths are replaced by the metric lengths of a curved geometry within Newton’s second law of motion, the metric form of the second law can be shown to be identical to the geodesic equation of motion of general relativity. The metric coefficients are contained in the metric lengths and satisfy the field equations of general relativity. Because metric lengths are the physically measured lengths, their use makes it possible to understand general relativity directly in terms of physical quantities such as energy and momentum within a curved space–time. The metric form of the second law contains gravitational effects in exactly the same manner as occurs in relativity. Its mathematical derivation uses vectors rather than tensors, and nongravitational forces can occur in this modified second law without a tensor form. Because quantum mechanics is based on Newtonian concepts of energy and momentum, it is shown that when metric lengths replace coordinate lengths in Dirac’s wave equation, it has a covariant form under a metric transformation of the physically measured distances themselves, rather than a coordinate transformation. Metric transformations are also used to describe the Dirac equation for the gravitational central field in a Schwarzschild metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.