Abstract

The fracture tensor is a combined measure of joint geometry parameters. The possible relations between the properties of the fracture tensor and the hydraulic properties of jointed rock including the equivalent continuum behavior are investigated in this paper through numerical experiments performed at the two-dimensional level incorporating joint networks with two joint sets. The possibility of a nonzero average block permeability and the equivalent continuum behavior of a joint system can be expressed with the help of the first invariant of fracture tensor (\iF\d0). A threshold value of \iF\d0 (to achieve nonzero block permeability) between 3 and 6 and a cutoff value of \iF\d0 (to achieve equivalent continuum behavior) between 10 and 30 were obtained for the joint geometry configurations studied in the investigation. Both the threshold value and the cutoff value of \iF\d0 were found to depend on the relative orientation of joint sets. Joint systems with low relative orientation angles (for systems with only two joint sets) and low densities do not show hydraulically equivalent continuum behavior. A nonlinear relation seems to exist between the directional permeability and the fracture tensor component for the connected joint configuration when rock blocks contain only minor discontinuities. For rock blocks containing major discontinuities, this relation becomes linear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.