Abstract
We show how to derive Catterall's supersymmetric lattice gauge theories directly from the general principle of orbifolding followed by a variant of the usual deconstruction. These theories are forced to be complexified due to a clash between charge assignments under U(1)-symmetries and lattice assignments in terms of scalar, vector and tensor components for the fermions. Other prescriptions for how to discretize the theory follow automatically by orbifolding and deconstruction. We find that Catterall's complexified model for the two-dimensional = (2, 2) theory has two independent preserved supersymmetries. We comment on consistent truncations to lattice theories without this complexification and with the correct continuum limit. The construction of lattice theories this way is general, and can be used to derive new supersymmetric lattice theories through the orbifolding procedure. As an example, we apply the prescription to topologically twisted four-dimensional = 2 supersymmetric Yang-Mills theory. We show that a consistent truncation is closely related to the lattice formulation previously given by Sugino.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.