Abstract

This article investigates the relationship between total ozone and subtropical jet stream (STJ). Total ozone data have been obtained from the total ozone mapping spectrometer (TOMS) instrument on the Nimbus - 7 satellite and have been examined in conjunction with meteorological data in the region 90°- 160°E, 20° -50°N, i.e., the entrance region of the East Asian STJ from October 1982 to September 1983.
 
 The STJ marks the boundary between the high tropical tropopause (ca. 1000 hPa) and lower subtropical tropopause (ca. 200 hPa). In winter it has been found that the total ozone contours are almost parallel to the wind direction, and the horizontal gradient in total ozone increases as the wind speed strengthens.
 
 The STJ normally marks a steep gradient in total ozone but in spring anomalous patterns are seen sometimes with very small gradients across the jet. A particular study has been conducted of these events, which are associated with a layer of relatively low but still stratospheric potential vorticity (PV) at around 150 hPa (380K) on the poleward side of the jet. This appears to be consistent with a transfer of air from troposphere to stratosphere above the jet core in March and April.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.