Abstract

A study of the process of implosion of a cylindrical tungsten wire array by electrical and optical methods shows that it involves two phases. In the first phase, the plasma is produced from the dense wire cores under the action of the heat flux from the current-carrying plasma. This plasma then fills the internal space of the liner array. The measured inductance of the liner and its visible diameter vary only slightly in this phase. During the second phase, the total material of the liner is compressed toward the axis and the inductance of the discharge gap increases. The process of the implosion of wire arrays is studied by analyzing the electric parameters (current and voltage) of the load in the Angara-5-1 facility. The time behavior of the load inductance, the average current radius, and the start time of the liner compression are determined. The compression start time determined from the visible size of the liner is found to coincide with that determined from electric measurements. The compression ratio of the liner in terms of the average current radius turns out to be lower than that measured by optical and X-ray diagnostics. The reason is that, by the instant of maximum compression, only a portion of the current flows at the periphery of the initial wire array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.