Abstract
We report the first-principles study of the orbital magnetism, the magnetic anisotropy energy, the ratio of the spin, and the orbital moments in nano-sized systems perturbed from their magnetic ground state. We investigate one monolayer thick films of Co, Fe, and FePt. Two types of the perturbation are studied. First, the collinear spin structure is rotated continuously between the easy and hard axes. Second, the non-collinear spin structures are considered varying in both the angles between spin moments and the direction of the net magnetization. In agreement with the experiment we obtain a variety of behaviours. We show that the magnetic anisotropy energy can both increase and decrease with increasing magnetic disorder. The type of behaviour depends on the variation of the electronic structure with increasing angles between atomic moments. We obtain the effect of band narrowing accompanying the spin disorder that correlates with the band narrowing obtained experimentally in a laser irradiated system. In agreement with this experiment we show that the ratio of the spin and orbital moments can both remain unchanged and vary strongly. We analyse the applicability of Bruno's picture, which suggests proportionality between magnetic-anisotropy energy and orbital moment anisotropy for non-collinear spin configurations. We study the non-collinearity of the atomic spin and orbital moments and demonstrate that the response of the orbital moments to the variation of the spin structure can be unexpected and spectacular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.