Abstract

The dynamic compression failure and ballistic penetration characteristics of conventional tungsten alloys similar in strength were investigated. Dynamic compression failure properties were generated with a symmetric Taylor test technique and penetration characteristics were obtained with 44 mm kinetic penetrators against an 300 HB hardness steel target at 1400 m/s. From shear crack length data generated with Taylor specimens impacted at different impact speeds a critical speed characterizing shear band initiation was deduced. The critical equivalent plastic strain at shear band initiation sites, obtained from the numerical simulation of the Taylor test at the critical impact speed, was found to decrease with the increase of the penetration performance. These results reinforce the argument that shear band formation is a failure mechanism associated with the erosion process for conventional tungsten alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.