Abstract

This paper presents a numerical model based on Discrete Element Method used to reproduce a series of tests of dry granular flow impacting a rigid wall. The flow was composed of poly-dispersed non-spherical particles flowing in an inclined chute with different inclination angles. The model has been calibrated based on the flow thickness measurements and the shape of the flowing particles (a single sphere and a clump). Quantitative comparison with experimental data showed good agreement in terms of peak impact force on the wall, the time of the peak and also the residual force values at the end of the tests. After validating the model, relation between microstructure and the normal impact force against the wall was investigated, by comparing the variation of impact force values along the height of the wall for different tests. Microstructural heterogeneities were observed in the impacting and depositing stages of the flow, indicating the presence of arching effect in the granular medium behind the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.