Abstract

Although there are phenomenological indications that the low-energy constants in the chiral Lagrangian may be understood in terms of a finite number of hadronic resonances, it remains unclear how this follows from QCD. One of the arguments usually given is that low-energy constants are associated with chiral symmetry breaking, while QCD perturbation theory suggests that at high energy chiral symmetry is unbroken, so that only low-lying resonances contribute to the low-energy constants. We revisit this argument in the limit of large ${N}_{c}$, discussing its validity, in particular, for the low-energy constant ${L}_{8}$, and conclude that QCD may be more subtle than what this argument suggests. We illustrate our considerations in a simple Regge-like model which also applies at finite ${N}_{c}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.