Abstract

Neutrino oscillations reveal several small parameters, namely, θ13, the solar mass splitting vis-à-vis the atmospheric one, and the deviation of θ23 from maximal mixing. Can these small quantities all be traced to a single source and, if so, how could that be tested? Here a see-saw model for neutrino masses is presented wherein a dominant term generates the atmospheric mass splitting with maximal mixing in this sector, keeping θ13=0 and zero solar splitting. A Type-I see-saw perturbative contribution results in non-zero values of θ13, Δmsolar2, θ12, as well as allows θ23 to deviate from π/4 in consistency with the data while interrelating them all. CP-violation is a natural consequence and is large (δ∼π/2,3π/2) for inverted mass ordering. The model will be tested as precision on the neutrino parameters is sharpened.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.