Abstract

In order to coexist with the WiFi systems in the unlicensed spectrum, Long Term Evolution (LTE) networks can utilize periodically configured transmission gaps. In this paper, considering a time division duplex (TDD)-LTE system, we propose a Q-Learning based dynamic duty cycle selection technique for configuring LTE transmission gaps, so that a satisfactory throughput is maintained both for LTE and WiFi systems. By explicitly taking the impact of IEEE 802.11n beacon transmission mechanism into account, we evaluate the coexistence performance of WiFi and LTE using the proposed technique. Simulation results show that the proposed approach can enhance the overall capacity performance by 19% and WiFi capacity performance by 77%, hence enabling effective coexistence of LTE and WiFi systems in the unlicensed band.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.