Abstract

In this paper, the design of a network of real-time close-loop wide-area decentralized power system stabilizers (WD-PSSs) is investigated. In this approach, real-time wide-area measurement data are processed and utilized to design a set of stability agents based on a Reinforcement Learning (RL) method. Recent technological breakthroughs in wide-area measurement system (WAMS) make the use of the system-wide signals possible in designing power system controllers. The main design objectives of these controllers are to stabilize the system after severe disturbances and mitigate the oscillations afterward. The proposed stability agents are decentralized and autonomous. The proposed method extends the stability boundary of the system and achieves the above goals without losing any generator or load area and without any knowledge of the disturbances causing the response. This paper describes the developed framework and addresses different challenges in designing such a network. A case study is provided to illustrate and verify the performance and robustness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.