Abstract

ABSTRACTElastomeric networks prepared by tetrafunctionally end linking hydroxyl-terminated poly(dimethylsiloxane) chains (PDMS) were filled by the in-situ precipitation of silica. The resulting networks were investigated under uniaxial elongation, biaxial extension, shear, and torsion in order to characterize the resulting changes in mechanical properties. Compared with the unfilled networks, the silica-filled materials showed large reinforcing effects. Specifically, their values of the modulus, ultimate strength, and rupture energy increased significantly. The results thus indicate that the PDMS networks filled by the in-situ precipitation of silica have very good mechanical properties in several, rather different deformations. Examples of other deformations of interest are equilibrium swelling, and dynamic cycling for characterization of compression set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.