Abstract

Incorporation of nanofillers into aliphatic polyesters is a convenient approach to create new nanomaterials with significantly reinforced mechanical properties compared to the neat polymers or conventional composites. Nanoporous cellulose gels (NCG) prepared from aqueous alkali hydroxide/urea solutions can act as alternative reinforcement nanomaterials for polymers with improved mechanical properties. We report a simple and versatile process for the fabrication of NCG/poly(L-lactide-co-caprolactone) (NCG/P(LLA-co-CL) nanocomposites through in situ ring-opening polymerization of L-lactide (LLA) and ε-caprolactone (ε-CL) monomers in the NCG. The volume fraction of the NCG in the nanocomposites was tunable and ranged from 4.5% to 37%. Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) results indicated that P(LLA-co-CL) were synthesized within the NCG and partially grafted onto the surface of the cellulose nanofibrils. The glass-transition temperature (Tg) of the NCG/P(LLA-co-CL) nanocomposites could be altered by varying the molar ratio of LLA/ε-CL and was affected by the volume fraction of NCG. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images confirmed that the interconnected nanofibrillar cellulose network structure of the NCG was finely distributed and preserved in the P(LLA-co-CL) matrix after polymerization. The dynamic mechanical analysis (DMA) results showed remarkable reinforcement of the tensile storage modulus (E') of the P(LLA-co-CL) nanocomposites in the presence of NCG, especially above the Tg of the P(LLA-co-CL). The modified percolation model agreed well with the mechanical properties of the NCG/P(LLA-co-CL) nanocomposites. The introduction of NCG into the P(LLA-co-CL) matrix improved the mechanical properties and thermal stability of the NCG/P(LLA-co-CL) nanocomposites. Moreover, the NCG/P(LLA-co-CL) nanocomposites have tunable biodegradability and biocompatibility and potential applications in tissue engineering repair, biomedical implants, and packing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.