Abstract

his study was conducted to investigate the effect of strengthening with ferro-cement on the flexural behavior of two-way RC slabs after exposure to direct fire. Twelve reinforced-concrete slabs were exposed to direct fire for one hour and cooled with air and water. They were then rehabilitated with a layer of ferro-cement using different bonding patterns (surface roughening, SBR material and screws). The effect of these variables was studied on the load-deflection relationship, ultimate load capacity, stiffness, energy absorption, ductility factor and strains of the compressed zone. The results showed a significant improvement in all the investigated parameters, demonstrating the efficiency of ferro-cement strengthening in improving the behavior of the slabs. It contributed to increasing the ultimate load capacity and initial stiffness of the slabs and to preventing and arresting crack propagation after cracking and even after reaching collapse. The effectiveness of SBR material in ensuring the bonding between the surface of the damaged slabs and the reinforcement layer was also revealed. KEYWORDS: Solid slab, Direct fire flame, Ferro-cement, Rehabilitation, SBR (styrene-butadiene rubber), Roughing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.