Abstract

Mounting evidence suggests that cellular metabolites, in addition to being sources of fuel and macromolecular substrates, are actively involved in signaling and epigenetic regulation. Many metabolites, such as cyclic AMP, which regulates phosphorylation/dephosphorylation, have been identified to modulate DNA and histone methylation and protein stability. Metabolite-driven cellular regulation occurs through two distinct mechanisms: proteins allosterically bind or serve as substrates for protein signaling pathways, and metabolites covalently modify proteins to regulate their functions. Such novel protein metabolites include fumarate, succinyl-CoA, propionyl-CoA, butyryl-CoA and crontonyl-CoA. Other metabolites, including α-ketoglutarate, succinate and fumarate, regulate epigenetic processes and cell signaling via protein binding. Here, we summarize recent progress in metabolite-derived post-translational protein modification and metabolite-binding associated signaling regulation. Uncovering metabolites upstream of cell signaling and epigenetic networks permits the linkage of metabolic disorders and human diseases, and suggests that metabolite modulation may be a strategy for innovative therapeutics and disease prevention techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.