Abstract

The glomerular microcirculation of the remnant nephron is characterized by reduced afferent (RA) and efferent (RE) arteriolar resistances and markedly increased single nephron glomerular plasma flow and filtration rates. We investigated the role of prostanoid production in mediating these adaptive alterations in glomerular hemodynamics after the reduction of renal mass. Acute administration of indomethacin, 5 mg/kg iv in anesthetized euvolemic, Sprague-Dawley rats with intact kidneys led to no significant alteration in renal hemodynamics, whereas in similarly prepared subtotally nephrectomized rats such inhibition significantly reduced remnant kidney glomerular filtration rate from 0.57 +/- 0.07 to 0.45 +/- 0.05 ml/min and single nephron glomerular filtration rate (SNGFR) from 93 +/- 4 to 72 +/- 5 nl/min. This reduction in SNGFR was due to diminutions in the glomerular ultrafiltration coefficient (Kf) from basal values of 0.061 +/- 0.004 to 0.050 +/- 0.004 nl X s-1 X mmHg-1 and in initial glomerular capillary plasma flow rate (QA) from 416 +/- 42 to 321 +/- 42 nl/min. The decrease in QA was a consequence of proportional increases in RA and RE. In other groups of animals we demonstrated that urinary excretions of both vasodilatory as well as vasoconstrictor prostanoids per surviving nephron increase several fold in subtotally nephrectomized rats compared with rats with intact kidneys and that administration of indomethacin, 5 mg/kg iv, reduced urinary excretions of both vasodilatory prostaglandins, prostaglandin E and 6-keto-prostaglandin F1 alpha, as well as vasoconstrictor prostanoid, thromboxane B2, to the same degrees in both subtotally nephrectomized rats and rats with intact kidneys.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.