Abstract

Vitamin D receptor (VDR) genotypes have been shown to be associated with differential susceptibility or resistance to tuberculosis. The influence of FokI, BsmI, ApaI and TaqI variants of VDR gene on 1, 25(OH) 2 D 3 modulated granzyme A expression of cytotoxic lymphocytes induced by culture filtrate antigen (CFA) of Mycobacterium tuberculosis was studied in 40 pulmonary tuberculosis (PTB) patients and 49 normal healthy subjects (NHS) by flow cytometry. In both the study groups, addition of 1, 25(OH) 2 D 3 (10 − 7 M) significantly reduced the percentage of granzyme A positive cells in both unstimulated (NHS, p < 0.0001; PTB, p = 0.02) and stimulated culture conditions (CFA, NHS, p < 0.0001; PTB, p = 0.0001) which correlated positively with the IFN-γ levels (unstimulated, p = 0.01; CFA stimulated, p = 0.004) in NHS. The ApaI aa genotype and bbaaTT extended genotype were associated with a significantly decreased percentage of granzyme A positive cells in NHS ( p < 0.05). Our results suggest that 1, 25(OH) 2 D 3 suppresses granzyme A probably by down-regulating Th1 cytokine response. Moreover, the VDR gene variants might regulate cytotoxic T-cell response via 1, 25(OH) 2 D 3 mediated suppression of granzyme A expression in tuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.