Abstract

Baicalin is a plant-derived, biologically active compound exerting numerous advantageous effects. Adipocytes store and release energy in the process of lipogenesis and lipolysis. Rodent studies have shown that baicalin treatment positively affects fat tissue, however, data on the direct influence of this compound on adipocyte metabolism is lacking. In the present research, the short-term effects of 25, 50, and 100 μM baicalin on glucose transport, conversion to lipids, and oxidation, and also on lipolysis in primary rat adipocytes were explored. Lipolysis was measured as glycerol release from adipocytes. It was shown that 100 μM baicalin reduced glucose oxidation but at any concentration did not affect glucose transport and lipogenesis. Baicalin significantly increased the adipocyte response to physiological and pharmacological lipolytic stimuli (such as epinephrine - adrenergic agonist, DPCPX - adenosine A1 receptor antagonist, and amrinone - cAMP phosphodiesterase inhibitor). The stimulatory effects of baicalin on epinephrine-induced lipolysis were markedly diminished by insulin (activator of cAMP phosphodiesterases) and H-89 (PKA inhibitor). It was also demonstrated that baicalin evoked a similar rise in epinephrine-induced lipolysis in the presence of glucose and alanine. Our results provided evidence that baicalin may reduce glucose oxidation and is capable of enhancing lipolysis in primary rat adipocytes. The action on lipolysis is glucose-independent and covers both the adrenergic and adenosine A1 receptor pathways. The rise in cAMP content is proposed to be responsible for the observed potentiation of the lipolytic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.