Abstract

Activation of Toll-like receptors (TLRs) on immune surveillance cells in the lung has been implicated in the pathobiology of allergic asthma, a condition associated with altered airway smooth muscle (ASM) contractility. Because ASM is known to directly respond to various proasthmatic stimuli, the potential role of TLR signaling in ASM in regulating airway expression of the proasthmatic phenotype was investigated. Cultured human ASM cells were found to express TLR4 and TLR9 mRNA transcripts and, whereas TLR9 stimulation had little effect, TLR4 activation with LPS elicited significant increases in IL-6 release and evoked proasthmatic-like changes in the constrictor and relaxation responsiveness of isolated rabbit ASM tissues. Complementary studies further demonstrated that the ASM responses to LPS were associated with activation of the ERK1/2 and p38 MAPK signaling pathways, IKK-mediated activation of NF-kappaB, and coupling of phosphorylated ERK1/2 with the p65 subunit of NF-kappaB. Moreover, the induced NF-kappaB activity and changes in ASM responsiveness were prevented in LPS-exposed ASM that were pretreated with inhibitors of ERK1/2 signaling, whereas inhibition of p38 MAPK augmented the proasthmatic responses to LPS. Finally, activation of p38 MAPK with anisomycin prevented both the LPS-induced stimulation of ERK1/2-mediated NF-kappaB activity and associated changes in ASM responsiveness. Collectively, these data support the novel concept that TLR4 activation in ASM elicits changes in ASM function that are regulated by opposing effects of MAPK signaling, wherein LPS-induced ERK1/2 activation mediates NF-kappaB-dependent proasthmatic-like changes in ASM function, whereas coactivation of p38 MAPK serves to homeostatically downregulate the proasthmatic effects of ERK1/2 activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.